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ABSTRACT
It is shown that the problem of computing astronomical refraction for any value of the zenith angle

may be reduced to a simple, nonsingular, numerical quadrature when the proper choice is made for the
independent variable of integration. The angle between the radius vector and the light ray is such a
choice. The implementation of the quadrature method is discussed in its general form and illustrated by
means of an application to a piecewise polytropic atmosphere. The Ñexibility, simplicity, and computa-
tional efficiency of the method are evident.
Key words : methods : numerical

1. INTRODUCTION

In the past, the problem of refraction has been
approached analytically. The simple relation

R\ A tan z[ B tan3 z

is commonly used for small zenith angles, z¹ 75¡ (Woolard
& Clemence 1966). The analytical theory (GarÐnkel 1944,
1967), valid for large zenith angles, is much more cumber-
some and in fact requires the use of electronic computers for
evaluation. We Ðnd that for cases in which the simple
formula cannot be used, direct numerical quadrature using
a proper choice for the variable of integration o†ers the
following practical advantages : (1) Ñexibility, permitting
arbitrary choice of an atmospheric model, (2) far greater
ease of implementation, as the formulae are simpler and
more closely related to physical theory, and (3) decreased
computational time and program size.

This paper presents a transformation of the classical
equations to a form that is readily adaptable to numerical
quadrature. Relevant details of the computational scheme
are discussed, and the method is applied to the piecewise
polytropic atmospheric model used by GarÐnkel (1944).

2. BASIC EQUATION

The astronomical refraction, R, for a spherically sym-
metric atmosphere is given by the integral

R\
P
0

lnko
tan t d(lnk) , (1)

subject to the invariant relation

kr sin t\ k
o
r
o
sin t

o
, (2)

where k is the index of refraction, r is the distance from the
center of Earth, and t is the angle between the light ray and
the radius vector, as shown in Figure 1. The subscript o
denotes the values at the observerÏs station. Thus, is thet

oapparent zenith angle, often denoted by z or f.
In principle, R could be calculated directly from

equation (1) by numerical quadrature, but because of
numerical difficulties (for tB 90¡), it is preferable to use t
itself as the variable of integration. Taking the logarithmic
derivative of equation (2) and substituting into equation (1),

we Ðnd

R\ [
P
0

to d(lnk)
d(lnrk)

dt\ [
P
0

to d(lnk)/d(lnr)
1 ] d(lnk)/d(lnr)

dt , (3)

where the value of the integrand as a function of t is given
by the solution of equation (2).

The integrand of equation (3) is a well-behaved function.
It would become singular only for the unlikely atmospheric
model given by the relation k P 1/r. Even so, in such a case,
t\ const, as seen by equation (2), and the integral of equa-
tion (1) would be trivial.

3. REMARKS ON IMPLEMENTATION

The atmosphere is speciÐed by the function k(r). It is also
necessary to have the function d(ln k)/d(ln r), which may be
easily obtained, even for empirical atmospheres, since lnk is
a smooth function of ln r.

The most time-consuming part of the computation is the
solution of equation (2) for r, given t. When k(r) and dk/dr
are analytically known, it appears advantageous to use a
Newton-Raphson iterative scheme. The successive approx-
imations to r are given by

r
i`1 \ r

i
[ F(r

i
)/F

r
(r
i
) ,

where

F(r) \ kr [ k
o
r
o
sin t

o
/sin t ,

F
r
(r) \ dk

dr
r ] k .

An excellent initial approximation may be found by Ðtting
the function y \ r [ 1 with a quadratic in x \ kr [ 1,
where r is in units of the EarthÏs radius. When r has con-
verged to suitable accuracy, one has the values of r(t), k(t),
and dk/dr from which d(ln k)/d(ln r) is computed. For the
atmosphere considered in ° 4, no more than two iterations
were ever required.

The formal lower limit in equation (3) is t\ 0, corre-
sponding to r \ O ; however, it is unnecessary to integrate
past the point where k is not signiÐcantly di†erent from
unity, for at this point the integrand is negligibly small. The
practical lower limit, may be determined from equa-tmin,tion (2). Terrestrial refraction, where the object being
observed is inside the atmosphere, may be treated by using
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FIG. 1.ÈLight path as a function of radius, r, and angle, t. The obser-
ver at measures the star as having a zenith distancer

o
t
o
.

the proper lower limit for integration. The value of istminfound by solving equation (2), with r taken as the height of
the object.

In the case of a piecewise atmosphere, the integrand of
equation (3) is not, in general, a continuous function across
the boundaries of each region. It is therefore necessary to
integrate each region separately and then sum the parts.
The limits on the integrals are then the corresponding
values of t at each boundary. These may be found directly
by solving equation (2) as a function of r.

TABLE 1

PHYSICAL CONSTANTS

Symbol DeÐnition Value

a . . . . . . . 0.0029241
r
^

. . . . . . EarthÏs radius 6,378,390 m
g . . . . . . . Gravitational constant 9.80655 m s~2
R . . . . . . Gas constant 287.053 m2 s~2 ¡C~1
n . . . . . . . Polytropic index for the troposphere 5
h
B

. . . . . . Altitude of troposphere 11,019 m

4. APPLICATION TO PIECEWISE POLYTROPIC

ATMOSPHERES

One model for EarthÏs atmosphere that has been used
previously is the piecewise polytropic model of GarÐnkel
(1944, 1967). In this model, the density of the atmosphere is
described by a polytrope of index n in the troposphere and
by another polytrope of index O (i.e., isothermal) in the
stratosphere. The two parts are connected by assuming the
continuity of the temperature and density across the bound-
ary (tropopause), deÐned by the altitude above theh

Bsurface of Earth. This model has the advantages that it is
simple to treat and permits adjustment according to present
weather conditions.

The index of refraction, k, is related to the density, o, by
the Gladstone-Dale relation,

k \ 1 ] ao ,

where the density is equal to unity for the standard weather
conditions of 273.15 K and 760 mm of Hg. The relations for
the density as a function of altitude, h, are for the tropo-
sphere (h \ h

B
),

o(r) \ o
w

C
1 ] b

w

A1
r
[ 1

r
w

BDn
,

and for the stratosphere (h [ h
B
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The physical constants are deÐned in Table 1.
The scale of the model is adjusted according to the

observed values of the temperature, and the pressure,T
w
,

at an altitude This observation may be in either thep
w
, h

w
.

TABLE 2

COMPUTED REFRACTION

NUMERICAL METHOD

ANALYTICAL FORMULA :
h
w

\ 0 m, h
w

\ 0, 0, 0, 0, 0,
ZENITH T

w
\ 273.15 K, T

w
\ 273.15, 273.15, 303.15, 273.15, 273.15,

ANGLE P
w

\ 760 mm, P
w

\ 760, 780, 760, 760, 760,
(deg) h

o
\ 0 m h

o
\ 0 0 0 2000 15,000

15 . . . . . . 16A.14 16A.14 16A.56 14A.54 13A.05 2A.3
30 . . . . . . 34.77 34.77 35.68 31.32 28.10 4.97
45 . . . . . . 60.17 60.17 61.76 54.20 48.64 8.60
60 . . . . . . 103.99 103.99 106.73 93.65 84.07 14.87
75 . . . . . . 221.34 221.49 227.33 199.15 179.09 31.73
80 . . . . . . 329.46 330.52 339.25 296.52 267.34 47.46
85 . . . . . . 588.87 614.56 630.96 546.76 497.75 89.20
86 . . . . . . 732.77 752.42 649.25 593.86 106.99
87 . . . . . . 899.23 923.52 791.88 729.38 132.53
88 . . . . . . 1145.51 1176.89 999.39 930.14 171.49
89 . . . . . . 1532.65 1575.47 1317.72 1245.89 235.77
90 . . . . . . 2189.42 2253.01 1838.65 1780.59 353.36
91 . . . . . . 2777.33 600.62
92 . . . . . . 1187.87
93 . . . . . . 2316.43
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troposphere or the stratosphere. These values are used to
compute the coefficients for only that associated region of
the atmosphere. In order to ensure continuity, the tem-
perature and the density must be extrapolated to the
boundary, deÐned by the altitude For the extrapolationh

B
.

from the troposphere, we have

T
B
\ T

w

C
1 ] b

w

A 1
r
B
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w

BD
,

o
B
\ o(r

B
) .

For extrapolation from the stratosphere, we have

T
B
\ T

w
, o

B
\ o(r

B
) .

The values and then become the values used toT
B

o
Bcompute the coefficients in the new region, replacing andT

wo
w
.
The method has been used to compute the refraction at

various altitudes for di†erent values of the zenith angle and
weather conditions. These results are presented in Table 2.
Also included, for the purpose of comparison, is the refrac-
tion from the analytical formula,

R\ A tan t
o
[ B tan3 t

o
,

where A and B as given in Woolard & Clemence (1966)
were adjusted for the present values of a and r from Table 1.

The average computing time per case with the IBM 7094
is 0.12 s.

5. DISCUSSION

The sensitivity of the refraction with respect to various
weather features is evident in Table 2. Though the method
readily allows weather observations at a high altitude, such
observations may not be as accurate as those based on the

ground. This could seriously a†ect the refraction computed
for a light ray that passes through a major portion of the
atmosphere.

The coefficients of the analytical formula may be adjusted
for weather conditions and altitude as is done with the
present method. We would expect similar agreement
between the formulae as is shown in the standard case in
Table 2.

The analytical formula is, of course, by far the fastest and
most simple to use. For zenith angles greater than 75¡,
however, its accuracy begins to deteriorate seriously. For
these higher angles, the method presented here surpasses
any other presently known with respect to simplicity, gener-
ality, and computational speed.

Postscript.ÈThis paper and the method presented in it were
submitted for publication in 1970 July. Unfortunately, the
referee did not understand the utility of our new approach,
and for personal reasons we did not have the time to argue
the point sufficiently. We did distribute preprints, and the
method has become, with improved atmospheric models,
the technique of choice for the computation of refraction
(see, e.g., Seidelmann 1992). Further, in addition to the com-
putation of refraction near the horizon, this method can
easily be extended to include the e†ects of atmospheric
inhomogeneities. We hope that our work will promote
investigations of such topics as the variability of refraction
near the limb.
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